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INTRODUCTION

In Refs. [1,2,31 the authors have presented a "moving singular-element"

procedure for the dynamic analysis of fast crack-propagation in finite bodies.

In this procedure, a singular-element, within which a large number of analyt-

ical eigen-functions corresponding to a steadily propagating crack are used

as basis functions for displacements, may move by an arbitrary amount AL in

each time-increment At of the numerical time-integration procedure. The moving

singular element, within which the crack-tip always has a fixed location, re-

tains its shape at all times, but the mesh of "regular" (isoparametric) finite

elements, surrounding the moving singular element, deforms accordingly. An

energy-consistent variational statement was developed in [1,2] as a basis for

the above "moving singularity-element" method of fast fracture analysis. It

has been demonstrated in [1,21 that the above procedure leads to a direct eval-

uation of the dynamic K-factor (s), in as much as they are unknown parameters

in the assumed basis functions for the singular-element.

Solutions to a variety of problems, were obtained by using the above pro-

cedure and were discussed in detail in [1,3]. These problems included, among

others: (i)constant-velocity, self-similar propagation of a finite central

crack in a finite panel [analogous to the well-known Broberg's problem] (ii)

stress-wave loading of a stationary central crack in a finite panel [analogous

to the well-known problems of Baker; Sih et al; and Thau et all, (iii) constant-

velocity propagation of a central crack in a panel, wherein, the propagation

starts at a finite time after stress-waves from the loaded edge reach the crack,

and (%) con;tant velocity propagation of an edge-crack in a finite panel, who;e

edg, es parallel to the crack are subjected to prescribed, time-independent, dis-

placemLnt:; in a direction normal, to the crack-axis analogous to the well-known
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problems of Nilsson [4]. In lRef. [51, the results of numerical simulation

of experimentally measured crack-tip ver;us time history in a rectangular-

double-cantilever-beam (RDCB), as reported by Kalthoff et al (6], were re-

ported. Also, in Ref. [5], the authors' results for the computed dynamic K-

factor for RDCB were compared with the experimental (caustics) results of

[61, and the independent numerical results of Kobayashi, (71 who uses a node-

release technique in fast fracture simulation.

In this paper, the authors wish first to clarify and comment upon sev-

eral aspects of the model formulation which appear in their Refs. [1,2].

Second, the model's accuracy and efficiency are evaluated in terms of less

sophisticated models. Finally, the practicality of the special singular

element for predicting crack growth for a given crack growth criterion is

illustrated. In addressing the second topic, attention is focused on: (i)

the effect of using only the stationary-eigen functions (or the well-known

Williams' solution) in the moving singular-element for dynamic crack propagation,

and (g) the use of isoparametric elements with mid-side nodes shifted so as

to yield the appropriate (r- ) singularity L8 ,9 ]. Finally, some recent results

are presented which illustrate the facility of the propagation-eigen-function

sini;ulir element for predicting crack propagation behavior based on KID

ver7,is crack propagation speed as a crack growth criterion.

The Variational Principl.e

Si-- the detai of the ormilation are presented in Refs. [1,21, only

tlo';' portinnt; of tht, formu lition necea'saarv to thc present discussion will

:nle ' Iii h're, lrtlir, fOr :;ii'i lie iLv tho rather ,;eueral equations of

Re! .. [1,.' .iI 11 tlL bc - ii ',,d to th1e '.i:;A o1 .1ode I crack ,rowth in bodies

.';ri, ,et :, rt 'l: iou !-r,', eru;l.. iii-'t, ae,;, ,':ero ! odv. lorc, .and with tOmetr,:/
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applied loading such that the model can make use of symmetry about the crack

plane. In Ref. [2], the principal of virtu I work proposed as the governing

equation for crack propagation during the period [tl,t 2 ] in which the crack

elongates by amount AZ is given as:

0 f ..+- 1 I 2 + (U2 +ui)5u 2) dV

2

- (Ti+Ti)6uidS -I f ij a' V6udS. (1)

02

The superscripts 1 and 2 refer to quantities at times t and t2 respectively.

The integrals in order of appearance refer to the volume of the body at time

t the portion of the surface of the body at time t2 subjected to prescribed

tractions and the new crack surface created between times tI and t2 . Note

2 2
that the variational quantities 6C ii and 6u i reflect the kinematic constraint

at t2 and therefore are arbitrary on AE. Making use of the small strain dis-

placement relation, the symmetry of aij,and using the divergence theorem, the

first term of the volume integral in (1) becomes:

V i j° aV2 ii j i f j ijjY2 + Y1 ) 6E ' d V  - ( a 2 V 2+0 1 1)6u i2dS a (° 3+ ''1 ,)Su2 dVr2 ~2~ f 2 2 C 21 2

(2)

where OV2 is the boundary of V2. Noting that (i) AE is part of 3V2 (resulting

in the last term of (1) dropping out), (ii) that S is a part of V 2 and (iii)
2

that 6u is zero on any portion of 3V that has prescribed displacements, we have:
i 2

S 2 2 +, 1 1 lud(

f i'ij 'j ii'J vj L

2+ J; _3 J 2 +T-'3 vfl (3)

'2 2 512dS 0
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2I
Since 3u. is arbitrary (3) leads to:

2 .. 2 .. i 1
I j = u . + (u . - i . . i n V 2  

( 4 a )

.2 . =2 i-1 1. 1Gj T +  V 3 on S 2 (4b)

2 2

and 0... = 0 on AE (4c)
13 "j

It is seen that (4c) is nothing other than the condition that the new

crack surface be traction free. Equation (4b) stipulates that traction

boundary conditions be satisfied on S and (4a) is a statement of dynamic
i2 _ ..

equilibrium within the body. If one assumes that a.i.i then (4a) reduces

2 2 2 .. 2
to the usual equilibrium equation at t2 (ie, a.. j=Pti). Then since G.. .PU.

2j,3 1 13, I

it follows that the state at t3 must also satisfy the usual equilibrium equa-

tion and so forth. Therefore, (4a) is equivalent to the standard expression

1 ..
for dynamic equilibrium when the assumption that a I -.pu1 is valid. A similar

argument leads to (4b) reducing to the usual condition for satisfaction of trac-

tion boundary conditions.

In the finite element model formulation, the above assumption is not

valid and therefore, the equations (4) do not reduce to those usually found in

1 1
finite element model derivations. One reason for a. .i0iu, is that in modeling

crack growth, it becomes necessary in the procedure of Refs. [1,2] to change the mesh

confiquration at each crack growth time step and to interpolate displacement,

velocity and acceleration data at the new node locations. This interpolation

will in general result in some disequilibrium in the interpolated solution.

Tf, for 1--.apI, we .i;s! k::!L! ;omt, dis,;.qu librium n t t such that Pu.-, .. .=f,
i, 1 13,3

t ;.i t I:;act ion of (4a) lcid ; to Iu - j.. ..- f. Clearly, the disequilibrium

at Illr.,,Q,,t tepi: will bc the same form (f) with the sign alternatin- at

, L ,:. Thb rlor,,, it -.- ulid appo,.r th.it the tormult.ition of Ref. [1,21 should

. r ILi t i1 0 ;L e i Ilat iit:f .
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Numerical experimentation with the formulation has indeed shown this

oscillation to occur. However, when used with the special singular element

of Refs. (1,21 the only time it has occured at discernable levels is in

static analyses. In dynamic analyses, it has been found that the inertial

forces are generally large enough to make the oscillatory forces negligible.

Similar oscillation has been observed when implementing the proposed

principle of virtual work with eight-noded isoparametric elements. (Wherein

the appropriate crack tip singularity was obtained by shifting midside nodes

as suggested by Ref. [8,9)). It is generally found that the oscillations

when using the isoparametric elements are larger than those observed with the

special singular element. This is believed to be the result of inherently

larger interpolation induced disequilibrium with these less sophisticated

elements.

A related variational principle for quasi-static crack growth in elastic-

plastic bodies was also presented in [i]. To account for effects of history

dependent plasticity and finite deformation gradients, an updated Lagrangean

rate formulation was used. As a result of the formulation yielding an in-

cremental analysis (as opposed to the computation of total state quantitites

as in the elasto-dynamic analysis above), the effect of state quantities at

tI appearing in the finite element equations for the solution at t2 is funda-

mentally different. The variational statement, simplified for the case of

zero body force, traction free crack surfaces and symmetrical modeling of Mode

I crack growth, is given as:

+ S dV Tr dS +fj61 dr (5)

1 ,I
wnere -. , are the Cauchy stress components of the solution at t I in the
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current reference couif igturat ion (t, V": )9 u are tho incremental di:;place-

ments ill ,,oin" from the reference state to the final state (t2,V lz)
menl in 2' 2' 1

T. are the applied incremental tractions, gi,- K,iUKj ' gij "+ ' andi. iiKlJj ~ J,i

Sij are the incremental second Piola-Kirchhoff stress components (or what are also

knon as Truesdell stress increments). Equation (5), through the use of the di-

vergence theorem, leads to the following Euler-Lagrange equations:

(r" kx ),  + S + F = 0 in V (6a)kj i,'j ij ,j i 1 6a

(Ti, ij )v -T 0 onS (6b)

u -S +T )vl = 0 on Az (6c)(kj i'k ii ii j

Equation (6a) is the usual translational equilibrium condition associated

with updated-Lagrangean formulations in terms of the second Piola-Kirchhoff

stress and does not contain any additional terms such as found in equation

(4a). Equation (6b) is the usual condition for satisfaction of traction

boundary conditions and equation (6c) is the condition that the newly created

crack surface be traction free. Further study of the derivation of equations

(5) and (6) shows that there is nothing inherent in the formulation to account

for (or corre'ct) the error from interpolation of quantities from the finite

elemient :7eioh it t with crack length I to the finite element mesh at t I with

crack !ength F 1 Z'-. However, the accumulated error at increment P ( p) can

be measured by:

I- PT 1 dV p f T S
P jij f' I i

U

Whl;C:: I:; ,A Check' on the eqiiilibriium -it increment p. Since this rate formulatio,,i

do-', not rostilt in terms, which LeadIL to oscUiAllion of the solution it seems

ti1kltt tor 11tl,ltill of th,. ]ineatr-oli.;tic dynramic p~roblem in terms of an in-

cr,'.,nt I lodl .,iitl-ir Lo tht.t Cor Lilt! L'j.j:;tiC-pja.;tiC lalr._;e deformation prot lm

J6
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would eliminate the trouble with oscillations while at the same time retain

the crack growth modeling features.

Results of analyses which are presented later in this paper are largely

based on the formulation as originally proposed in Ref. [1,21 since it ap-

pears that no significant change would result from a reformulation. The one

exception to this are the results obtained through the use of isoparametric

elements with midside nodes shifted so as give a singularity at the crack tip.

In those analyses, the usual statement of virtual work is applied:

O=fV O 2 6F- 2 +PU 2 Su~ 2 dV -f T22

2 02
Traction free crack surfaces are approximated by letting nodal forces on the

crack surfaces be zero.

Singular Element for Dynamic Crack Propagation

A singular crack tip element was also developed in [1,2] and used in con-

junction with the formulation (2) for the analysis of Mode I dynamic crack

propagation in linear elastic two dimensional bodies. This singular element

uses an arbitrary number of the displacement eigen-functions which come from

the solution of a crack in an infinite body. For dynamic crack propagation,

these eigen-functions are taken as those for the corresponding steady-state

dynamically propagating crack in an infinite body. Equations (7) give the

form for the assumed displacement, velocity and acceleration within the sin-

gular element:

u s ssX2,t) = U(&,×2,v03(t) .(7a)

. U - v(U),i (7b)

U , = - 2v(U) + v (u) (7c)

where U is the matrix of eigen-fUnctions (pLus appropriate rigid body
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modes), : is the vector of undeternined coefficients, v is the crack propa-

gation speed and (,1x2 ) are the coordinates relative to the moving crack tip

(Z=xi-vt). It should be noted that (7b) and (7c) are obtained form (7a)

through differentiation with respect to time with the assumption that v is not

a function of time. The following comments should remove any incorrect notions

that this in any way limits the use of the element to constant speed crack

propa-lation. First, it has been shown [12] that the near-tip fields are

the same for steady-state and transient crack propagation. Therefore, provided

v at each time step reflects the current speed, there is no question that the

eigen-functions for the element are correct and that the coefficient of the

sinular eigen-function 0 is indeed the Mode I stress intensity factor. A

second consideration is that the associated stress eigen-functions do not

satisfy the stress equilibrium-equation for non-steady-state (as viewed by an

observer moving ith the crack-tip).
2u i  2u. 2 3

o. . =:--- 2v + v ,) (8)

but instead, satisfy the corresponding steady equation:

2 ____ijl 2 3 u.0.. = t'v (9)

While it would be preferred that equation (8) be satisfied exactly, the dis-

placcment finite element method does not require this. The stress equilibrium

of (3) i; sati'f ied in the usual approximate sense associated with the finite

Sel ,nt .-.erhod.

0n, , rh'n'. dit ic-.1t v "',hich .iri e; when us in ', more than one element type

in ,I mot!-) i th-. I.c:' ,l c rmit i5iliv at tho interface of the dissimilar ole-

Ionn :. i. . i 1tb, O. x i, mmcd tor maintta ini 4  compatibility at

t:;' L O,)i ,r 1 , 1 j 'u I. i r It :IullL ',hii'h a r shared By cit, ht-node.d isopara-

, -4
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metric elements. This method involves selecting 3 such that the following

three error functionals are minimized:

I f (uS-uR)2 d 12 =I (Is-aR) 2 d d = (s- R)2dp (10)

PS PS s

s .s . R .R..R
where u ,u ,u are as in equations (7), u ,u u are displacements, velocities,

and accelerations at the boundary of the eight-noded isoparametric elements,

and p is the boundary of the singular element shared by isoparametric elements.

This procedure gives a, ! and in terms of qs 4 and qs' the nodal displacements,

velocities and accelerations of nodes on the bou.dary shared by the singular

element and the isoparametric elements. In particular, Bis related to q by

A =A (11)
- -S

where A is in general, a rectangular MxN matrix (M being the dimension of

and N the dimension of qs). The exact form of A does not enter the present

discussion but can be found in [1,2]. The question to be addressed here

concerns the constraints which must be placed on the dimension of A (and there-

fore',). It is well known that in hybrid finite elements there is a restriction

on the number of internal parameters (a) so that the matrix equations relating

these parameters to the unknowns of the final finite element equations are non-

singular 11]. It should be noted that the current procedure is not (strictly

speaking) a hybrid procedure and therefore the matrix relating B to q does

not pose the same problem. However, the following does show there is a res-

triction on the dimension of 3. En the derivation of [1,2] there are nine nodal

points and therefore eighteen degrees of freedom associated with the singular

element. All of these are on its boundary (denoted . in (10)) as illustrated
S

in the typical nesh 01 Fi,;ure 1. To ascertain the behavior of the singular

VIe Tent with diffecrin numtbers of eoi tn-tfunctionq (1c, differin- dimensions

-9-



for ) the ei ucti--, ltei (I c i iciiod c:; o f the :, i i 1 tr el emen L for ze ro

craic'. :peed werk' L',I,l ted . In mlaki il,; Lhe calcula tions, the symmet trv p1ane

nodal dL.)l;Laco!nnt normal to the crack plane waS constrained since no ,igei-

functions .,,ere included for rigid body translation normal to the crack plane.

Based on the deletion of this one degree of freedom it can be seen that the

sin-ul r element must have seventeen deformation modes (eigen vectors) and

should have only one zero energy mode (eigen value of zero), corresponding

to a rigid body translation. In varying the dimension of (call it M) it

wa ; found that for M = 17, there wa.s one zero eigenvalue which through ex-

amination of the eigenvector did indeed correspond to the desired rigid body

translation parallel to the crack plane. When cases for M <17 were considered,

the nu::.Zr of these zero eiler gy modes; (1') was P = 18-M,(M' 17). These excess

zero energy modes are clearly undesirable. It was also observed that the

desired rigid body mode was no longer present when these extra modes occured.

The con.straint on M for the current configuration is therefore M > 17. In

the ;enerl 2D case where N is the number of unconstrained nodal degrees of

frtedo a sociated with the singular element we must have M > N, where M in-

cludes the appropriate nutmber of special rigid body displacement functions.

If we d'not, the number of these ri,;id body functions by R, then the required

numn,'r of crack ;olution eigon-functions; (C) is given by C N-R which is

-,xlict-'." that coustrant foue' for the num ber of assumed element stress f7unc-

t,, ; ; Ln ivbrid :;Lre!;-i finite element 71od :; [ 11 . The results presented in

[I, i .mi t o ;re:;entd ! re hav,' O:.ed >... Theretore sati:;fving the above

C"11l 't :'.1 :11t.

,, n ,. it;' o: ,r.c em r a', i i th eitit'r the spec -i.l :;inl4u .lA element

- i7 -
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or with the singular isoparametric elements requires the finite element

mesh in the region of the crack tip to be modiftied at each time step for

which crack growth occurs. The procedure used here (and in [1,3,5] is to

shift the singular element (s) without distortion, (as shown in Figure 2) so

that it is only the regular elements surrounding the special modeling region

which become distorted. -An important point which differentiates this pro-

cedure from the more common node release techniques for crack growth is that

the size of the increment of crack growth (AE) is not restricted by nodal

spacing but rather can be made as small as desired. Figure 2 also illustrates

that the distortion of elements periodically reaches a critical degree at which

time the crack tip region of the model is remeshed before applying the shifting

procedure. Since this procedure involves the shifting of nodal points and

since the nodal quantities of displacement, velocity and acceleration at each

time step appear in the difference equations associated with the Newmark time

integration scheme for the solution at the subsequent time step, it is neces-

sary to use interpolation procedures to obtain correct values for the shifted

nodes.

Considerations of Efficiency and Accuracy

In the previous sections, the discussion was largely in terms of partic-

ular features of the variational principle or singular element derivation.

Here the discussion will be of a broader nature with most of the attention

being focused on the more general attributes of efficiency and accuracy.

The singular element with crack propagation speed dependent eigen-func-

tions has several attractive features whLch stem directly from the use of the

anaiytical ;olution for the near-crack-tip field. First, the traction free

crack :;urface conditions are s;atisfied exactly. Second,the coefficient of the

-1.
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sint;ular eigen-function is the Mode I stress intensity factor and is obtained

directly without recourse to indirect energy based procedures or extrapolation

method;. Third, because many eigen-functions are used, the accuracy of the

soluton is les,; sonsItive to the Singular element size than for ,lements wi th

less ,Ol,',Iflt basis functions.

As might be expected, this element also has some features which tend to

offset the above positive ones. One such feature is that the propagation-

ei:en-functions lead to a non-symmetric stiffness matrix. However, since the

non-F,:=metry is localized to rows and columns corresponding to as, the ad-

ditional effort in solving the equations is not excessive. Another aspect of

usinj special elements which requires attention is the inherent incompatibility

of displacement with neighboring elements. The procedure proposed in [1,2]

and used here involves satisfying compatibility along o in an integrated leasts

square sense as shown in equation(10).

In order to weigh the above positive features against the negative, two

alternative models are considered. The first alternative is to use a similar

special singular element but to substitute stationary crack eigen-functions

for the propagating crack eigen-functions. This substitution has two effects.

FLr:it, the stiffne,;s matrix becomes symmetric. Second, the coefficient of the

singular cigen-function can no longer be interpreted as KI, the Mode I stress

intensity factor. At first, this loss seems a dear price to pay since it would

Lapper that one must resort to indirect procedures for determining KI such

as ene r,,y calcuLations; or the fittin, of 1) propaint Lon-eigon-functions to the

ne.Lr ielJ .;out i(mii Hot'eovcr, K can 1W oLtzi ed dit-ctlV From the statiOn 'irv-I

eicn-luncLion elemCnt solution ,is;in., a simpLe formula described later. W4itn

_ u,;t io o" c'alellt i n Kl  nswer,,d, it remains to be seen how ,'ell the

.ci. ein um'. e ,O .;tation.'rv runeti en:-; (twentv) ,'n accomodate thL distored

• -7-
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near field displacement patterns of a propagating crack.

It is clear that whether one uses stationary-eigen-functions or propagation-

eigen-functions, the special element will still require additional work to

ensure compatibility with neighboring elements. To ascertain the benefits of

eliminating this additional work, a third model is considered. This model, as

mentioned previously, uses eight-noded isoparametric elements exclusively.

The r- 2 singularity in stress and strain is incorporated in the model by shifting

midside nodes on element edges joining the crack tip node to the quarter-point

of the element side as illustrated in Figure 1. To ensure the correct behavior

in all angular directions from the crack tip, the elements adjoining the crack

were degenerated to the triangular form seen in Figure 1. While this model

has no problem in terms of compatibility, it does have a problem in terms of

calculation of K One has virtually no choice but to resort to energy methods,

fitting of eigen-functions or extrapolation procedures. Since a major consider-

ation in comparing the above models is the accuracy and ease of computing KI,

the indirect procedures for computing K I with the stationary eigen-function

model and quarter-point isoparametric element model will be described.

Indirect Methods for Computing KI

As pointed out previously, when the propagation-eigen-function singular

element is used, KI is evaluated directly during the solution procedure and

therefore indirect methods for evaluation K I are not required. However, that

does not mean that these methods can not be used and in fact the comparison

of KI from alternate procedures is a good manner for checking the consistency

of the solution.

The first two indirect proeedure's rely on the well known relationship

bet een K[ wnd the fracture energy release rate (G) for pure Mode I fracture:

.4 - 1 -
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K (12)
1 f('d )

where f(, ) = xd (1-a)/[4 ds - (d+ri2)s d s ds

• 2 (V/Cd) 2 2 )2ad -I -(;/C),e l- (v/C)
dd s s

2
S S

2 2i \
Cd = (- ) for plane strain

2 2w 1
or C _u (_) for plane stress

d P 1-v

In the above, v is the crack propagation speed, "i the shear modulus, v the

possons ratio, p the mass density, C the shear wave speed and C the dila-s d

tational wave speed. For the limiting case as v goes to zero, we have

f(l,l) = 1-v for plane strain

or fll) = for plane stress (13)or f~ll) = +v

To make use of (12), one must evaluate G. This has been done in the present

work using three different approaches. The first approach to determining

G is throu-h an energy balance. This is done in crack propagation analysis

most easily by considering the energy of the system at two adjacent time steps

t, and t2 hetwe,n which an increment in crack length AT has occured (A.- 2:4)*

1i .'A et ine the increment in work done on the system by the applied traction

,an' d i., i, l 'h,'tt ,o; vnda ry condition:; as AW =  1. -W14 and similarlv denote the

ch; ;',' in st rain energy by AU and the ci:ui-,e in kinetic energy bv AT then an

avera,;,' C for the interval (tl,t2) is- iven bv:

b: C - t 7 . ? - ( 1 4 )

kih:; -thc 1,2L1%.;t11 ot tew propaj;at in:;. crack front.

TIL,. ,con ud pt.ch to ,'o[put in,: "is to wse a crick clo.;ure int ,-ra

I i 1i 1t 0 [1ion 1ivo e'; the riC t io on " .o1 xiti; .it t For pure .IodL-

*1 - t4 -
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fracture behavior one has only displacement component u and traction corn-Y

ponent T present at AE. An average G for the interval t,, t 2 is given by:
y

G T ( x, t )u 2Xt )dx (15)
AEj y 1 y '2

where u is half the total crack opening due to the use of symmetry in the
Y

model. The factor of usually observed in linear elastic work evaluations

is canceled by a factor of 2 which accounts for the use of symmetry in the

model.

The third method for evaluating G is the J-integral. It is well known

that C=J for elastic bodies and therefore is obtained from the definition

of J in the current symmetrical dynamic analysis of a Mode I crack [10]:

J=2 A d+ (Wn-T au ds (16)

P U /

where D is the mass density, W is the strain energy density, r is a curve

connecting the upper crack surface to the symmetry plane ahead of the crack

(which is propa ating in the x coordinate direction), A is the two-dimensional

region enclosed by F, n is the x-component of the outward unit normal to rx

and T. is the traction vector acting on F(outward positive). The factor of

2 again reflects -he use of symmetry in modeling.

In addition to the above energy related procedures, two additional methods

are used here for determining K . The fir:;t of the.se two involves the fitting

of near Ficld di!;placements with the propa:iat ion-eigen-functions discussed

previem;l'. Thi'; method is quite genral in nature and can be used with either

thc ,;pe.cil tationar'-e igen-functiou element or with the quarter-point singular

c l u'flnt ;. The proced ro i; to u:;t, e qutljuli1 (10) to obtain an equ.ation of the

foritll ) sicai that the coo'ffici nt oI the singular propai.at ion-eigen-function

.' - 10 -
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3 (. I= ) can be related to the near field nodal displacements qs

The final procedure for obtaining KI is primarily applicable to the

stationary-eigen-function element and results in the evaluation of K from

this element being nearly as direct as when using the propagation-eigen-

P be the undetermined coefficient of the singularfunction element. Let Sbe h neemndcefiin ftesnua
1

propagation-eigen-Eunction (3 PK Let IS be the corresponding coefficient

of the stationary-eigen-functions, noting 3 S= = K only if v, the crack

propa:ation speed, is zero. Using the definition of G for Mode I fracture:

AE

G limit -1 T x) u (x-AE) dx (17)
AZ- A fY Y

P
it is possible to obtain two equivalent definitions of G in terms of 1 or

S1a by substitution of the respective singular eigen-functions into (17):

1

- f(ad's 1 A f(l~l) S 82

G A d' a (5P)2 and G -1 (a) (18)
2P 1 2P 1GP

From (18) it is then seen that P which is always equal to K can be

relatL~d to 3 by:

K= 3 = f( ds) f3 (19)

1 C d'('s)

where f(!,I) and f(aid,(s) are as defined in the text immediately following

equat ion (12).

Crack Propagation Computations. for Comparison of Models

The primary purpo:se of these computations is to compare results using

seve.r.i 1 lvel:; of mode lin:; olphitLication. To keep the problem from ob-

:;crli u- tht has ic diffcrence.; in mIodeICi n.: techniques, a rather simp com-

hi .tt : Om of :',um,.t rv 1 and loidin.' wa!; seleected. The problem which cas

,.,,' ,, ,t,. ,,,r. in ",, {- :, ttt , t, om t t ve o ity p ,.

A" .L ,1i : , .1 e , eua' in a . ;ql.r sltt WoWs) edges

1
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parallel to the direction of crack propa,,ation are 'ubjected to uniform

displacments u2 in the direction normal to that of crack propagation.

The dimensions and mesh configuration are depicted in Figure 1. This pro])-

len is analogous to that treated by Nitssion [4] who obtained an analytical

solution for steady-state stress-intensity factor for the constant velocity

propagation of a semi-infinite crack in a finite-height, infinite-width

strip. In the following, the material properties are v-0.286, p=2.94 x 10 4N/mm
2

and 3.=2.45 x 10 -6kg/mm 3 . Three levels of constant crack velocity propagation,

(v/C )=0.2,0.4,0.6 are considered. In each case, the initial crack length,
S

(Z /W) is 0.2. For each case, the crack growth increment size is maintained
0

constant (as opposed to time step size) at a value of AY/W=0.005 which cor-

responds to 2.5 percent of the singular element's dimension in the crack prop-

agation direction.

In these analyses the uniform prescribed displacement is applied sta-

tically at t=O sec. While maintaining this prescribed displacement, the crack

is then made to propagate at a uniform speed. This procedure results in crack

acceleration over the first time step and since the time step size is varied

so as to maintain the crack growth increment size constant, this acceleration

will also differ for each value of the uniform crack speed.

v=0 .2C The computated K I(t) for this lowest cons;idored propagation

speed are illu:trated in Figure 3. Note that the computed K (t) are normaliked

with rc-spoct to K , which is the static K for the infinite width strip problem of

Nil ;:ion (wherc K=(uE)/I(l- ) and are plotted as a Function of nondimensional

cracl len.;th (/W). In each of Figures 3,4 and 5 the arrows indicate the

crack lenth:,; at whichi the remeshin.; procodure (illustrated in Figure 2) takes

plat,. h,,la:.Thed Lin,,; of Figure 1, 4 -and 3 indicate the steady-state value

--I -17 -



of K :or the infinite strip problem due to Nilsson [4). The nearness to

unit'y of the dashed line of Figure 3 indicates the relatively low velocity

dependence of the strip solution at this crack speed.

The solid curve of Figure 3 represents the values of KI from the prop-

agation-eigvn-function element and as discussed previously are determined

directly as the coefficient of the singular eigen-function during the solution.

The solid points of Figure 3 are the results from the stationary-eigen-function

element. To illustrate the small effect of crack speed at v=0.2Cs , the plotted

values are iustt the coefficient of the singular eigen-function but because of

the non-zero crack speed are not strictly speaking values of K . To obtain

correct values of KI in this case, one would have to use equation (19). Since

this correction would uniformly lower all these points by only 1.4%, these

corrected values are not plotted. It can be seen, however, that this correction

would indeed tend to improve the already excellent agreement with the propa-

gat iun-, ,Qn-funcLion element.

The open sympols of Figure 3 are the results of the quarter-point isopara-

metric element computations. The open circular points are based on a G obtained

through a global energy balance (14) which is then converted to KI through

equation (12). It can be seen that except for the first four time steps, these

point:; igre qiiitt, well with the prop:atat ion-eigen- funct ion element solution.

The open tri.in:;ul ar points are based on a C obtained through the crack closure

inte.,ril of equ:ltion (15) and thn conv,,rted to K throuh equation (12). It is

'IIS

* 1
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clecr from Figure 3 that the crack closure integral procedure is inferior

to the energy balance procedure when used with the isoparametric elements.

This is attributed to the inherent inaccuracy of the boundary tractions

for the isoparametric element which are required when using equation (15).It

should be noted that a very satisfactory aspect of the crack growth modeling

procedure used here is that none of the curves in Figure 3 show erratic be-

havior which can be related to the remeshing procedure. From Figure 3, it

seems that any one of the three models is adequate for the problem when v=0.2C .s

v=0.4C The results for this intermediate case are given in Figure 4.

Again, the dashed curve represents the steady-state infinite strip solution.

To illustrate the increasing effect of the crack speed on the crack tip field,

the solid points are again the coefficient of the singular term of the sta-

tionary-eigen-function solution and must be modified via equation 19 before

being interpretable as K . The solid square points are these modified values.

It can be seen that the agreement between the propagation-eigen-function

solution and the stationary eigen-function solution is still quite good despite

the increased effect of crack speed on the crack tip field.

The quarter-point isoparametric element results are indicated by open

circular points. Here again, the global energy balance procedure has been

used. Unlike the results for v=0.2Cs, there is a pronounced difference be-

tween the isoparametric element results and the special element results. It

is believed that this difference is largely due to the inadequacy of the four

,elCkent!; Used here to model the increa!;inly contorted displacement and stress

field:; which occur With incrcasin! crack spi.ed. An increase in the number of

trianjuiar eluments in the angular direction mi:;ht be expected to remedy this

def ic ienet,'. The inadequacy of the eien'ent refinment is further evidenced

- 19 -



by the noticeable disturbance in the KI values accompanying each remeshing.

v=O.bC The results for this largest considered crack speed are presented

in Figure 5. Here again the dashed line is the steady-state infinite strip

solution and the solid curve the propagation-eigen-Eunction solution. The

solid square points are the K I values from the stationary-eigen-function ele-

IIment solution, and are obtained from the i(oi icla ons sn

equation 19. The solid triangular points are also KI values from the sta-

tionary-eigen-function solution but were obtained through fitting the near

field nodal displacements (q ) with the propagation-eigen-functions using

-S

the method described previously. Nineteen eigen-functions plus the one rigid

body mode were used in this fitting procedure. Both of the above procedures

for treating the stationary-eigen-function-solution yield results which agree

quite well with the propagation-eigen-function-solution but clearly the one

represented by equation 19 is preferred due to the ease of application.

The results from the quarter-point isoparametric elements are plotted

in Figure 5 using open circular points. Unlike the results presented at

v=0.4C and v=0.2C , the values of K plotted here were obtained through the

J-integral as defined by (16). Though the results based on the global energy

balance procedure are not presented here, they were found to agree quite

well with those using the J-integral except that there was substantially more

"noise". This "noise" became particularly apparent at positions where remeshing

4,

was requirted.

From th :;o lcl1at i on, izivolvin, cr.ick propiiatrion speed rang i., from

0.2 to 0.uC , it ,ipp.ir (i.t tor thsi, crack-eped ranes the opa~kL ion-

S,, i 'n- ! elct, 1.onl <,c :n hai; 1o sig-,ni iit, L ,1ldVz1L.,'-; ovor th1e t t io i '-e Lgtn-

: I't n ; t h r in l I r,[, o wcutr.w or in terms of ease Ot" CO PuLpttknl

K other th:n ii n- more theort i ca 1 1%v cons istent and appealin,:,. Since there

- 20 -
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is additional effort in dealing with the non-symnctric matrices which accompany

the propagation-eigen-function formulation, it seems the stationary-eigen-func-

tion element might be more effectively implemented to obtain results within

a tolerable engineering accuracy. The large number of eigen-functions used in

these special elenent formulations in order to produce no spurious kinematic de-

formation modes is believed to be the reason for the high degree of accuracy

attained with the stationary-eigen-function element in the analysis of fast

crack propagation. It was observed that the use of four quarter-point iso-

parametric elements was quite adequate at v=0.2C , but that by v=0.4C thes s

accuracy had become marginal (5-10% difference from special element results).

In considering the effect of crack speed on the isoparametric element solution

accuracy, it should be kept in mind that experimentally measured crack speeds

often fall below 0.3C . If one needs to consider higher speeds, mesh refinements

seems to be necessary.

Application to Prediction of Crack Growth

In the computations of [1,3,5] and in those of the previous section, the

loading of the body and the crack growth history are used as input to the

analysis. The output of each of these "generation phase" computations is KI

as a function of time, crack length or crack speed. The subject of this sec-

tion are computations of a reverse nature. That is, the input to the computation

is the loading of the body and a crack growth history. This type of analysis

is referred to as an "application pha,c" computation.

One feature of the special igen-ftniction elements which has proved to

be quite useful in the ipplcaton type analysis is that- in addition to KI
?K 23KI  KIbein; zomputetd direct]v from o one also has - and -- as a result of the

-s 3it

i in i .m t on t: the e~rror fminctimo.1a ; o[ .qumat iun (10).
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Having these quantities at some time, say t=t1 , simplifies the prediction of

crack velocity for the subsequent time step since the value of K I can extrap-

olated using a Taylor series expansion. More precisely, in order to determine

AE= 2-rI using a crack growth criterion based on KI, one needs to have an

average K for the interval (t,t2). For the propagation-eigen-function

element, this average KI is predicted in terms of quantities at t1 by:

K = p(t ) +Ap~ ) (At)2 pt(1
Ip 1 1 2 1 1~ 8 1~( 1

where P K[ 2K I

where and =  
---. Having K one uses the criterion to obtain v

i t 1 2 K1at
which is then used to obtain AE = vAt. Having AE the finite element mesh

for the crack length E2 can be generated and the solution at t2 obtained. It

should be noted that a similar prediction procedure to (21) exists for the

stationary eigen-function element. Through the differentiation of (19) with

respect to time one can obtain:

Ki fl 1 S(t ) + A t BSt + (At)' ~ (22)
Ip f1(d) t) 8 I

An application phase calculation for a double cantilever beam specimen,

identical to specimen No. 4 of Kalthoff, et al [6], has been completed using

the KID versus relation shown in Figure 6 as a crack growth criterion. This

curve and the crack initiation fracture toughness for the computation (K IQ

2.32 MNm - 3 /2 ) are idcntical to the ones used by Kobayashi [7]. The predicted

K OS t VT vs t and " (or v) vs t which were obtained using the propagation-

eiL;,gn-Cunction olemcnt are shown in Figure 7 along with the corresponding

e:.xp,,rime.utaL results of Kalthoff, et al [6] and numerical results of Kobayashi

[71. he nresent :,line stress analysis usd 1"=3380'N/m', v0.33 and " /m

It :an ,, een in Viriuro 7 that the vs t rsults are virtually indistin-

/2



guishable from the experimental results and that even the v vs t results agree

quite well. In comparing the K1 curves it is seen that there is quite good

agreement for approximately the first half of the total crack growth. At

about midway, however, the computed KI increases briefly while the experimental

values drop. Before arrest occurs, there is again good agreement, however.

One possible explanation for the above disparity is that the Araldite

B used by Kalthoff shows some rate dependence even though it was selected

over similar materials because of its relatively low rate dependence [6].

For example, the dynamic elastic constants quoted in [6] are E=3660 and v=0.39,

whereas the static values, used in the analysis, are E=3380 MN/m2 and v=0.33.

While this rate dependence must surely have some effect on the specimens res-

ponse, it has been observed through numerical experiments that other aspects

of the experimental procedure and numerical modeling procedure also have quite

large effects. The results of these sensitivity studies are being presented in

a companion paper [13].

CONCLUS TON

The comparison of the propagation-eigen-function element, the stationary-

eigen-function element, and the quarter-point isoparametric element in terms of

accuracy and efficiency leads to several conclusions. The two eigen-func-

tion elements showed similar accuracy at all crack speeds up to 0.6C whileS

the isoparametric element model 4tarted showing significant differences be-

tweQn 0. 2C and 0. 4C . While the quarter-point isojlara:uetric elerints were
S t

the leaIst expeLsive to u.;e ( 2/3 the os t of the stationarv-ei -en- unetiua

Clent, t IId 1/2 that of the prop.bl t ion-C i gen- fule t ion li emen t) the ir sen-

t'." Io crack speed and the n':d to us, indirct L.ethods to obtain "

rt'eucc their mttiji att:. ctivene ;. :urthrri.re , for aiplication t'.'p
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analv-:;es the Lack of KI and K1I may complicate the use of isoparametric

type ele:-,cnt:; to the point that they lose their cost advantage. Another con-

clusion to be drawn from the comparison of the models is that the stationary-

eigen-function element has all the attractive features of the propagation

eigen-function element without the disadvantage of non-symmetric stiffness

matrices. Also, because the matrices are not crack speed dependent, they

do not need to be recomputed each time crack speed changes. Finally, the

eigen-function elements seem particularly attractive for application phase
3K a2K

I __K I .
analys;is since at each time step one has not only KI but also - and -__-at a 2'

thus simplifying the prediction of crack behavior in the subsequent time step.

The application phase anlaysis of the double cantilever beam specimen

illustrated the utility of the propagation-eigen-function element for pre-

dicting crack growth behavior using K versus v as a crack growth criterion.
ID

Since the stationary-eigen-function element showed very good agreement with

the propagation-eigen-function element in the generation type analyses and

since the predictive logic for application type analyses is the same for both

element types, it seems the stationary-eigen-function element is also well

suited to application computations.

The propagation-eigen-function element, even if more expensive to use than

the other two special elements discussed above, is nevertheless more consistent

and appealin4 in term!; of theoretical formulation, and application to basic

research in dynamic crack propaa.ition in finite bodies. Due to this reason, ex-

ten:; io d,,nuiic fracturo studic'S, o both 'genration' and 'application' type,

on la.or:itorv :ipccimen.; such as the reotan.,ular double cantilever beam (RDCB)

tapered dollhi cantilcver bcam (TDCB), and ed;e crack specinen, were conducted

by tho , I .u t :4 :; in; t!,, pre!;cntlv d, ,,ribcd propa ation-ci.en-function special,

(2.4



element.

These numerical results were compared with available experimental data.

A detailed presentation of these result:i is made in a companion paper [131, in

which the effects of specimen geometry, input crack-velocity hisLory, anI iii-

put dynamic fracture toughness property data, are discussed in detail.

ACKNOIVLEDGEMENTS

This work was supported by the U.S.O.N.R. under contract No. N00014-78-7636.

The authors are grateful to Dr. N. Perrone for his timely encouragement. The

authors also thank Ms. M. Eiteman for her care in the preparation of this

manuscript.

REFERENCES

[1] Atluri, S.N., Nishioka, T., and Nakagaki, M., "Numerical Modeling of
Dynamic and Nonlinear Crack Propagation in Finite Bodies, by Moving
Singular Elements" In Nonlinear and Dynamic Fracture Mechanic3, Ed. N.
Petrone, and S.N. Atluri AMD-Vol 35, ASME, NY, 1979, pp 37-66.

[2] Nishioka, T., and Atluri, S.N., "Numerical Modeling of Dynamic Crack
Propagation in Finite Bodies, by Moving Singular Elements, Part I -
Theory", Journal of Applied Mechanics, ASME, 1980 (In Press).

[31 Nishioka, T., and Atluri, S.N., "Numerical Modeling of Dynamic Crack
Propagation in Finite Bodies, by Moving Singular Elements, Part II -
Results" Journal of Applied Mechanics, ASME, 1980 (In Press).

[41 Nilison, F., "Dynamic Stress-ntn :;it. Factors for Finite Strip Prob-
lems", Int. .Tnl. of Fracture, Vol., No. 4, 1972, pp 403-411.

[51 Nishioka, T., and Atluri, S.N., "Efficient Computational Techniques
for the Analysis of Some Problems of Fracture in Pressure Vessel
and Piping," to be presented at ASME Pressure Vessels and Piping
Conference, San Francisco, Aug. 1980.

[6 Kalthoff, T.F., Beinert, J., Winkler, S., "Measurements of Dynamic Stress
Intensity Factor:; for Fa,:;t E fnin.; and Arresting( Cracks in DotLblu-Canti-
lec'r-Bcam Spci ,n,;'', F.:;t Fr.icturo, and Cracl .\frrost, AS',, STP b27, G.T.

Hahti .11d :.F. Kanninom , Ed:;. AST'IN, 1977, pp lhi-170.

[7; .h vi ;ht, A.S., "lynam ic Frac t, r .\na lv:; i; l Dyn.im ic Fii te i Fl'em.n t
Me thod - ,.nration .id Prop.i -at ion Analv,;e ', In Nonl kl,'ar and W narl ic
Prietr , r . ce Lii *; , !.. :t]. Pcrrot . ,nl '.N. .\ tliuri, .\D-Vol 35,
NY, 1)70, pp )).

--

-25



[S1 Henshell, R.D., Shaw, K.G., "Crack Tip Finite Elements are Unnecessary".
Int. J. Num. Meth. Engn,., Vol 9, 495-507, 1975.

[9] Barsoum, R.S., "On the Use of Isoparametric Finite Elements in Linear
Fracture Mechanics", Int. .. Num. Meth. r ,, Vol 10, 25-37, 1971).

[10] Kishimoto, K., Aoki, S., Sakata, M., "Dynamic Stress Intensity Factors
Using J-Tntegral and Finite Element 14ethod", Engna. Fracture Mech., Vol
13, pp 387-394 (1980).

(11] Pian, T.H.H., Tong, P., "Basis of Finite Element Methods for Solid Continua",
Int. J. Num. Meth. Engng., Vol 1, 3-28 (1969).

(121 Achenbach, J.D. and Bazant, Z.P., "Elastodynamic Near-Tip Stress and
Displacement Fields for Rapidly Propagating Cracks in Orthotropic
Materials", J. AppI. Mech., 42, p 183 (1975).

(13] Nishioka, T., Atluri, S.N., "Numerical Analysis of Dynamic Crack Propagation:
Generation & Prediction Studies" submitted to Jnl. of Engineering Fracture
Mechanics, 1980.

-26 -



Figure 1. Finite element 'Mesh for the numerical approximation to the infinite
strip problem of Nilsson [4].

Figure 2. Illustration of the shifting/remeshing procedure for modeling crack
growth.

Figure 3. Nondimensionalized K vs F for constant velocity crack propagation
(v=0.2C ) in the model of Figure 1.s

Figure 4. Nondimensionalized KI vs Z for constant velocity crack propagation
(v=0.4C ) in the model of Figure 1.s

Figure 5. Nondimensionalized K vs E for constant velocity crack propagation
(v=0.6C ) in the model of Figure 1.

s

Figure 6. KID vs t used as the crack growth criterion for the application
(propagation) phase calculation of Figure 7.

Figure 7. Application phase analysis of the double cantilever beam specimen
(No. 4) of Kalthoff et al [6].
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